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DESIGN STORMS-
INTENSITY-DURATION-
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Table 9. Sectional Mean Frequency Distributions for Storm Periods of 5 Minutes to 10 Days

and Recurrence Intervals of 2 Months to 100 Years in Wisconsin

Sectional code (see figure 1 on page 4)

01 — Northwest 06 - East Central
02 - Novth Central 07 - Southwest

03 — Novtheast 08 - South Central
(4 - West Central (9 - Spurheast

(5 — Central

Rainfall {inches) for given recurrence interval

=3

Duration 2-month 3-month 4-month 6-month S-month  1-year 2-ysar Syesar 10-vear 25-year 5S0-year 100-ysar

10-day 1.90 229 264 3.10 388 478 5.83 6.58 763 B.4T
S-day 1.55 1.85 209 242 303 375 4 66 3.35 6.27 703
T2-hr 1.28 1.63 1.85 2.14 2.68 N 412 478 56T 6.39
48-hr 1.20 1.53 1.70 157 248 305 3.8z 44 5.23 5.88
24-hr 1.22 1.42 1.55 1.80 ! 222 277 3.50 404 479 5.36
18-hr 1.15 1.24 148 1.69 152 2.09 2.60 3.29 3.80 450 504
12-hr 1.06 1.24 1.35 1.58 1.78 153 24 305 3.51 417 4 .66
g-hr 0.91 1.06 1.18 1.24 1.53 1.66 2.08 262 3.03 3.59 402
3-hr 0.78 0.91 0.99 1.15 &1 142 1.77 2.24 2.59 307 343
2-hr 0.7 0.83 0.90 1.04 1.1% 1.2% 1.81 203 2.4 2.78 N
1-hr 0.57 0.67 0.73 0.84 0.96 1.04 1.20 1.64 1.50 225 2.52
30-min 0.45 0.52 0.57 0.66 0.75 0.82 1.02 1.20 145 1.77 1.58
S-min 0.33 0.38 0.42 0.45 0.55 0.60 0.75 0.95 1.0% 1.2% 145
10-min 0.26 0.30 0.33 0.38 043 047 0.58 0.73 0.85 1.0 1.12
S-min 0.15 07 0.19 0.22 0.25 0.27 0.33 D42 0.48 0.57 0.64

Huff, F. A. and J. Angel, 1992, Rainfall Frequency Atlas of the Midwest, Bulletin 71,
Midwestern Climate Center and lllinois State Water Survey, Champaign, lllinois.



OUTLINE

e Physical principles and climate models indicate that
the magnitude of large rainfalls will increase.

e Historical data indicate that increases have already
occurred.

e But the current models and historical data do not yet
provide a sufficient basis for hydrologic design.



OUTLINE

e However, we can do the following:

— Use the latest rainfall statistics

— Use climate scenarios to evaluate vulnerabilities

— Make greater use of continuous hydrologic simulation
— Re-evaluate design criteria

— Design based on risk-based design, incorporating
uncertainty



CLIMATE CHANGE

Physical principles and climate models
indicate that increasing concentrations of
greenhouse gases will cause increases in the
magnitude of large rainfall events over most

of the world.



Projected changes in the intensity of precipitation,
displayed in 5% increments, based on a suite of models

and three emission scenarios.

Figure courtesy of Michael

Wehner.



CLIMATE CHANGE

In fact, the magnitude of large rainfalls
appears to have been increasing over the last
several decades.



NOAA ATLAS 14 VS. TP-40
100-YEAR RECURRENCE INTERVAL

Todd, C. E., J. M. Harbor, and B. Tynor, Increasing magnitudes and frequencies of extreme
precipitation events used for hydraulic analysis in the Midwest, 2006, Journal of Soil and
Water Conservation, 61, 179- 184.
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Rainfall
(inches)

14

Sum of 5 Largest
Daily Rainfalls

Madison, WI

10

2

0
1860

1880

1900

1920 1940

Year

1960

1980

2000

2020



Number of Exceedances of 2 Inches
In 5-Year Increments
Madison, WI
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Number of Exceedances of 3 Inches
In 5-Year Increments
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IMPLICATIONS FOR DESIGN

Although the historical data indicates
increases in the magnitude of large rainfalls,
statistical analyses have not supported
inclusion of trends in the calculation of new
intensity-duration-frequency relationships

recenty developed by the National Weather
Service.



LIMITATIONS OF CLIMATE
MODELS

* There are dozens of legitimate climate models
and their predictions vary widely and depend
on the degree to which CO, increases.

e Global model results have coarse spatial
resolution and must be “downscaled” either
statistically or by use of regional models.

— There are many different ways to downscale
global models.
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LIMITATIONS OF CLIMATE
MODELS

Do not capture long-term variability observed
in actual rainfall data.
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DESIGN ISSUES

e At this time climate models should not be
directly used to estimate operational
intensity-duration-frequency relationships.

* Analyses of historical rainfall data are not
currently capturing the effects of climate
change, and are conducted infrequently.

e What should we do to adapt hydrologic design
to present and future climate change?



ADAPTING HYDROLOGIC DESIGN
TO CLIMATE CHANGE

Use the latest rainfall statistics (e.g. not TP-40)

Use climate scenarios to evaluate vulnerabilities of existing
infrastructure

Make greater use of continuous hydrologic simulation and
coupled models (e.g., surface and ground water)

Re-evaluate design criteria (e.g. detention basins)

Design based on risk-based design, incorporating uncertainty



RISK-BASED DESIGN

e Risk-based design is commonly used in
decision making when benefits and/or costs

are uncertain.

* Flood-risk management is often conducted
this way.

— The expected benefit of a given project is the
difference between the expected flood damages

with and without the project.



RISK-BASED DESIGN

 The Federal Highway Administration
developed a risk-based approach for designing
stream and river crossings.

— Schneider, V.R. and K.V. Wilson, 1980, Hydraulic Design of
Bridges With Risk Analysis, U.S. Department of
Transportation, FHWA-TS-80-226.

— Corry, M.L., J.S. Jones, and P.L Thompson, 1981, The
Design of Encroachments on Flood Plains Using Risk
Analysis, U.S. Department of Transportation, Hydraulic
Engineering Circular No. 17.



RISK-BASED DESIGN

There are two sources of uncertainty that
should be considered in risk-based design:

— Uncertainty due to natural variability (aleatory).
This uncertainty cannot be reduced.

— Uncertainty due limited knowledge and
information (epistemic). This uncertainty can be
reduced through data collection, modeling, and
research.



RISK-BASED DESIGN

Modern design incorporates both aleatory
and epistemic uncertainty. Examples include

— Levee freeboard design by USACOE (Risk Analysis
and Uncertainty in Flood Damage Reduction
Studies, 2000, National Academy Press,
Washington D.C.)

— Estimation of hurricane flood risk for New
Orleans. (http://nolarisk.usace.army.mil/)



http://nolarisk.usace.army.mil/

RISK-BASED DESIGN

An early example of the incorporation of
epistemic uncertainty in hydrology design is

the use of “expected probability”, proposed
by Leo Beard.

— Beard, L.R., 1960, Probability estimates based on
small normal-distribution samples, Journal of

Geophysical Research, American Geophysical
Union, 65(7), 2143-2148.



EXPECTED PROBABILITY

e Standard statistical analysis of flood data
produces flood quantiles (e.g 100-year flood
discharge) that are unbiased.

e However, the exceedance probability
associated with the resulting quantile is
biased low due to sampling uncertainty.
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EXPECTED PROBABILITY

e Beard recommended using quantiles for
which the associated exceedance probabilities
were the desired probabilities.

 This recommendation is discussed in Bulletin
17B, the current federal guidelines for
conducting flood frequency analysis in the
United States.



EXPECTED PROBABILITY

Note that the same issue arises for flood
guantiles that are estimated using the USGS
regional flood frequency equations.
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The expected probability is the integral of the products
of the two functions, and in this case equals .0165.



RISK-BASED DESIGN

e Risk-based design can easily incorporate
epistemic uncertainty, such as sampling
uncertainty or uncertainty about the
magnitude of future rainfalls.

* For large projects (such as the design of a
large bridge), the uncertainty can be explicitly
included in the design analysis.



RISK-BASED DESIGN

 For smaller projects, the uncertainty can be
accounted for in the estimation of rainfall or
discharge quantiles.

— That is the quantiles (e.g 100-year, 24-hour
rainfall intensity) can be computed so that the
expected exceedance probability is the desired
probability.

— This would lead to increased quantiles, that would
decrease as information about future rainfalls
Improves.



RECOMMENDATIONS

Use the latest rainfall statistics
Use climate scenarios to evaluate vulnerabilities

Make greater use of continuous hydrologic
simulation

Re-evaluate design criteria

Design based on risk-based design, incorporating
uncertainty



QUESTIONS?
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